Absence of coupled thermal interfaces in Al2O3/Ni/Al2O3 sandwich structure

نویسندگان

  • Xiangyu Li
  • Wonjun Park
  • Yong P. Chen
  • Xiulin Ruan
چکیده

Sandwich structures of aluminum oxide, nickel, and aluminum oxide films are fabricated by atomic layer deposition to study thermal interfacial resistance between a metal and a dielectric material and the interfacial coupling effect across a thin metal layer. Thermal resistance of a thin nickel layer as well as two interfaces is measured using the 3x method. Experimental results show interfacial resistance between nickel and aluminum oxide to be 6:8 10 mm K=W at 300 K, with a weak dependence on the metal thickness and temperature. A two-temperature model and a detailed diffuse mismatch model have been used to estimate interfacial resistance theoretically, and the results agree reasonably well with experiments. Estimations from the two temperature model indicate that in the overall thermal interfacial resistance, the phonon-phonon interfacial resistance dominates over the resistance due to the electron-phonon coupling effect and inside the metal layer. Also, the phonon-phonon interfacial resistance does not vary as the metal layer thickness decreases below the electron-phonon cooling length, indicating that the two adjacent interfaces are not thermally coupled. Published by AIP Publishing. https://doi.org/10.1063/1.5006174

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر غلظت ذرات Al2O3 بر خواص پوشش‌های کامپوزیتی Ni-Mo-Al2O3 تولیدی به‌روش رسوب‌دهی الکتریکی

In this research, Ni-Mo-Al2O3 composite coatings were electro-deposited on the mild carbon steel in a citrate bath containing micro- sized Al2O3 particles. Afterward, the effect of the particle concentration in the electrolyte bath (ranging from 0 g/L to 30 g/L) on the microstructure, microhardness, and corrosion performance was evaluated. To investigate the microstructural changes and the surf...

متن کامل

Design and fabrication of compositionally graded inorganic oxide thin films: Mechanical, optical and permeation characteristics

Different types of inorganic oxide films composed of a chemical composition gradient single layer were designed, fabricated and characterized. Compositionally graded thin films were created by power-controlled co-sputtering of alumina (Al2O3) and silica (SiO2) at room temperature, allowing the structural design of the film to be tailored at the nanometer scale. Two distinct graded thin films we...

متن کامل

Influence of Interface Structure on Schottky Barrier Heights of \alpha-Al_{2}O_{3}(0001)/Ni(111) interfaces: A First-Principles Study

The Schottky barrier heights (SBH) for -Al2O3(0001)/Ni(111) interfaces have been examined using the first-principles pseudopotential method, and compared with our previous results of Al2O3(0001)/Cu(111) interfaces. Configurations with different rigid-body translations parallel to the interface for both the O-terminated and Al-terminated interfaces are examined to clarify the influence of the mi...

متن کامل

Time Dependent Debonding of Aluminum/Alumina Interfaces under Cyclic and Static Loading

The structural integrity of oxide/metal interfaces is important in many applications. While most attention has focused on the debonding of oxide/metal interfaces by conducting strength and fracture toughness tests, very few investigations have looked at time dependant failure of interfaces under cyclic or static loading. Tests have been conducted on sandwich specimens consisting of 5 100 micron...

متن کامل

Temperature-Dependent Thermal Boundary Conductance at Al/Al2O3 and Pt/Al2O3 interfaces

With the ever-decreasing size of microelectronic devices, growing applications of superlattices, and development of nanotechnology, thermal resistances of interfaces are becoming increasingly central to thermal management. Although there has been much success in understanding thermal boundary conductance at low temperatures, the current models applied at temperatures more common in device opera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017